1. Solid-state properties of organic radicals

Research into the solid-state properties of organic radical solids has a long history of more than fifty years, focusing on molecular conductors and magnets. While most organic radical solids possess low-dimensional electronic states, improvements in the dimensionality and the interaction intensity have produced versatile physical properties. We have been working on the research into cyclic thiazyl radicals and their related compounds, which are quite unique chemical species, being on the borderlines between organic and inorganic, and between molecule and polymer, and, as such, we have observed unique physical properties, such as room-temperature magnetic bistability, photo-induced phase transitions, organic ferromagnetism, double melting, electron-transfer phase transitions, non-linear electrical transport, anomalous transient current, etc. Very recently, we have started working on 3D organic radical crystals, formed by polyhedron-shaped π-conjugated organic radicals.

Fig. 1. A thiazyl radical salt, [NT]₃[GaCl₄], exhibits low-field negative resistance effects in a charge-ordered state on a square, columnar network of NT.
Fig. 2. A disjoint diradical, 4,4'-bis(1,2,3,5- dithiadiazolyl) (BDTDA), which makes highly oriented thin films with alternating \(\pi \)-stacking perpendicular to the substrates, exhibits a photocurrent with a high on/off ratio at reverse bias voltages, and photovoltaic behavior at zero bias voltage in ITO/BDTDA/Al sandwich-type cells.

Fig. 3. Amorphous thin-film field-effect transistors of paramagnetic vanadyl tetrakis-(thiadiazole)-porphyrazine with ionic liquid gate dielectrics exhibit \(n \)-type performance with a high mobility of \(2.8 \times 10^{-2} \text{ cm}^2\text{V}^{-1}\text{s}^{-1} \) and an on/off ratio of \(10^4 \).
Fig. 4. A novel phenanthroline derivative, \([1,2,5]\)-thiadiazolo[3,4-\(f\)][1,10]phenanthroline (tdapO\(_2\)) was newly synthesized. Its radical anion, tdapO\(_2\), acts as a bridging ligand, and forms multidimensional network structures. Magnetic property measurements reveal that such salts exhibit 1D antiferromagnetic interactions, and magnetic ordering below 15 K.

Fig. 5. We carried out electrochemical crystallization of the radical anion salts of NDI(naphthalene diimide)-\(\Delta\). X-ray crystal analysis revealed the \(K_4\) structure, which was formed by the unique intermolecular \(\pi\)-overlap directed toward three directions from the triangular-shape NDI-\(\Delta\) radical anions.
References

9. “Molecule-displacive ferroelectricity in organic supramolecular solids”,

(Note: The references are presented in the order in which they appear in the document, without any changes or additions.)

10. “Synthesis, optical properties and charge transport characteristics of a series of novel thiophene-fused phenazine derivatives”

11. "Crystal Structure, Spin Polarization, Solid-State Electrochemistry, and High n-Type Carrier Mobility of a Paramagnetic Semiconductor: Vanadyl Tetrakis(thiadiazole)porphyrinate”,

18. “Fe(II) spincrossover complex of [1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline”,
Y. Shuku, R. Suizu, K. Awaga, O. Sato,
19. “Electronic structure of disjoint diradical 4,4’-bis(1,2,3,5-dithiadiazolyl) thin films”
20. “Effects of Hydrostatic Pressure and Uniaxial Strain on Spin-Peierls Transition in an Organic Radical Magnet, BBDTA•InCl₄”
M. Mito, S. Kawagoe, H. Deguchi, S. Takagi, W. Fujita, K. Awaga, R. Kondo, S. Kagoshima,
K. Awaga, Y. Umezono, W. Fujita, H. Yoshikawa, H.-B. Cui, H. Kobayashi, S. Staniland, N. Robertson,
22. “Pressure-Induced Ferromagnetic to Nonmagnetic Transition and the Enhancement of Ferromagnetic Interaction in the Thiazyl-Based Organic Ferromagnet ⊙-BBDTA•GaCl₄”,
M. Mito, M. Fujino, Y. Komorida, H. Deguchi, S. Takagi, W. Fujita, K. Awaga,
23. “Structural Study of a Dimerization Process in an Organic Radical Magnet, BBDTA•InBr₄”,
W. Fujita, K. Kikuchi, K. Awaga,
24. “Spin, charge and lattice correlation in thiazyl radicals and their molecular compounds”,
K. Awaga, T. Tanaka, T. Shirai, Y. Umezono, W. Fujita,
25. “Charge ordering and nonlinear electrical transport in quasi-1D organic chains with strong electrostatic interchain interactions”,
K. Okamoto, T. Tanaka, W. Fujita, K. Awaga, T. Inabe,
26. “Coordination bond formation at charge-transfer phase transition in (BDTA)₂[Co(mnt)₂]”,
Y. Umezono, W. Fujita, K. Awaga
27. “Multi-dimensional crystal structures and unique solid-state properties of heterocyclic thiazyl radicals and related materials”,

28. “A one-dimensional coordination polymer, BBDTA\textsubscript{4}InCl\textsubscript{4}: Possible spin-Peierls transition with high critical temperature of 108 K”,

29. “Low-field negative resistance effect in a charge-ordered state of thiazyl radical crystals”,

30. “Ferromagnetic ordering of $S=1/2$ Heisenberg ferromagnetic chains in organic magnet β-BBDTA-GaBr\textsubscript{4}”,

31. “[BDTA]\textsubscript{2}[Cu(mnt)\textsubscript{2}]: An almost perfect one-dimensional magnetic material”

32. “A unique new multiband molecular conductor: [BDTA][Ni(dmit)\textsubscript{2}]2”
S.S. Staniland, W. Fujita, Y. Umezono, K. Awaga, S.J. Clark, H.B. Cui, H. Kobayashi, N. Robertson,

33. “Coexistence of ferromagnetic and antiferromagnetic interactions and magnetic ordering in the alternating stacking structure of (BDTA)[Ni(mnt)\textsubscript{2}]: Possible supramolecular superexchange mechanism”
Y. Umezono, W. Fujita, K. Awaga

34. “Tetrakis(thiadiazole)porphyrazines. 4. Direct Template Synthesis, Structure, General Physicochemical Behavior, and Redox Properties of AlIII, GaIII, and InIII Complexes”,

35. “Crystal structure and magnetic properties of a thiazyl organic ferromagnet, BBDTA-GaCl\textsubscript{4}
with T_c=7.0 K”
W. Fujita W, K. Awaga,
36. “Pressure effects on magnetic bistability in a heterocyclic thiazyl radical TTTA”
 T. Tanaka, W. Fujita, K. Awaga

37. “Packing Motifs and Magneto-Structural Correlations in Crystal structures of Metallo-
 Tetrakis(1,2,5-thiadiazole)porphyrazine Series, TTDPzM (M = H₂, Fe, Co, Ni, Cu, Zn)”
 Y. Suzuki, M. Fujimori, H. Yoshikawa, K. Awaga

38. “Packing Motifs in Porphyrazine Macrocycles Carrying Peripherally-Annulated Thiadiazole
 Rings: Crystal Growths of Metal-Free and Cobalt Tetrakis(1,2,5-thiadiazole)porphyrazines”
 M. Fujimori, Y. Suzuki, H. Yoshikawa, K. Awaga

39. “Room-temperature magnetic bistability in organic radical crystals: Paramagnetic-diamagnetic
 phase transition in 1,3,5-trithia-2,4,6-triazapentalenyl”
 W. Fujita, K. Awaga, H. Matsuzaki, H. Okamoto,

40. “Complex phase transitions in stable thiazyl radicals: spin-gap, antiferromagnetic ordering and
 double melting”
 W. Fujita, K. Awaga, Y. Nakazawa, K. Saito K, M. Sorai,

41. “Organic ferromagnetism of $T_c=6.7$ K driven by evaporation of crystal solvent”
 W. Fujita and K. Awaga,

42. “Spontaneous magnetization below 44 K in (benzo[1,2-d:4,5-d']bis[1,3,2]dithiazole)-FeCl₄
 driven by evaporation of crystal solvent”,
 W. Fujita, K. Awaga, M. Takahashi, M. Takeda, T. Yamazaki,

43. “Ferromagnetic Coordination Polymer Composed of Heterocyclic Thiazyl Radical, 1,3,5-
 Trithia-2,4,6-triazapentalenyl (TTTA), and Bis(hexafluoroacetylacetonato)copper(II)
 (Cu(hfac)₂)”,
 W. Fujita and K. Awaga,

44. “Room-Temperature Magnetic Bistability in Organic Radical Crystals “,
 W. Fujita and K. Awaga,